Abstract—Ethanolic extract of Euphorbia hirta Linn was prepared and tested for its hepatoprotective effect against CCl4-induced hepatitis in rats. Alteration in the levels of biochemical markers of hepatic damage like SGPT, SGOT, ALP, bilirubin, were tested in both treated and untreated groups. Carbon tetra chloride (2 ml/kg) has enhanced the SGPT, SGOT, ALP, bilirubin. Treatment with Ethanolic extract of Euphorbia hirta Linn (100 mg/kg and 300 mg/kg) has brought back the altered levels of biochemical markers to the near normal levels in the dose dependent manner.

Keywords— CCl4, Euphorbia hirta Linn, Hepatoprotective.

I. INTRODUCTION

ALTERNATIVE Systems of medicine Viz. Ayurveda, Siddha, and Traditional Chinese medicine have become more popular in recent years. Medicinal herbs and extracts prepared from them are widely used in the treatment of liver disease like hepatitis, cirrhosis and loss of appetite. Liver diseases are of the serious health problems. In absence of reliable liver protective drugs in allopathic medical practices [1].

Euphorbia hirta Linn (Family: Euphorbiaceae) commonly known as Dudhi, is an herb used in Indian system of medicine in disease of children like worm infestation, bowel complains and cough. The decoction of the plant has been reported to useful in the treatment of bronchial asthma. It has also been used for liver ailments in the absence of reliable liver protective drugs in allopathic medical practices [1].

Euphorbia hirta Linn (Family: Euphorbiaceae) commonly known as Dudhi, is an herb used in Indian system of medicine in disease of children like worm infestation, bowel complains and cough. The decoction of the plant has been reported to useful in the treatment of bronchial asthma. It has also been used for liver ailments in the absence of reliable liver protective drugs in allopathic medical practices [1].

Euphorbia hirta Linn (Family: Euphorbiaceae) commonly known as Dudhi, is an herb used in Indian system of medicine in disease of children like worm infestation, bowel complains and cough. The decoction of the plant has been reported to useful in the treatment of bronchial asthma. It has also been used for liver ailments in the absence of reliable liver protective drugs in allopathic medical practices [1].

II. MATERIAL AND METHODS

A. Collection and Identification of Drug

The plant of Euphorbia hirta Linn (Dudhi) was collected (in the month of July and August) from surrounding field of IPS college Gwalior. The whole plant were dried in shade, and used for extraction. The plant was positively identified and confirmed by the Taxonomist, Dept. of Ayush, Gwalior (M.P.). The voucher specimen (Ref No: 326) of the plant material has been deposited in the Department of Ayush.

B. Preparation of Extract

The drug was extracted with ethanol in soxhlet apparatus, the extraction was completed in 25 cycles. The extract was dried and stored in closed container.

C. Animals

Healthy adult Male Wistar rats weighing about 200-250g were used for the study. They were grouped in polypropylene cages, maintained under standard conditions (12h:12h light:dark cycle; 27±3°C; 40–60% humidity) and maintained with free access to standard rat pellet diet (Amrut laboratory animal feed, manufactured by Navmaharashtra chakan oil mills Ltd, Pune) and filter water ad libitum.

The experiments were carried out in accordance with guidelines described by the Institutional Animal Ethics Committee of the Institute (Proposal No.1039/ac/07/CPCSEA).

D. Acute Toxicity Studies

Overnight fasted Albino Wistar rats were subjected to acute toxicity studies to determine the safe dose by acute toxic class method of oral toxicity as per OECD 423 guidelines (OECD, 2001). The rats were observed continuously for 2h for behavioral, neurological and autonomic profiles and, after a period of 24, 72 h, and thereafter up to 14 days for any lethality, moribund state or death.

E. Experimental Induction of Hepatotoxicity

Hepatotoxicity was induced in Albino Wistar rats (150-
200g) by intraperitoneal (i.p.) administration of carbon tetrachloride (1:1 CCl4: Liquid paraffin in the dose of 2ml/kg) for two continuous days. After 24 hours of last dose of CCl4, blood was withdrawn from retro-orbital plexus. Serum was separated and analyzed for the various biochemical markers of hepatotoxicity and hepatic damage.

F. Assesment of hepatoprotective activity

Animal were divided in to five groups each having six animals (n =6) Group A was kept as normal, animals of group B (Control) were given intra peritoneal dose of toxin solution 2ml/kg body weight. Animals of group C (std. drug) were given oral dose of std. Drug (Sylimar) at the dose of 200 mg/kg body weight. All the test samples (Group D and E) were administered orally to the animals at the dose of 100, 300 mg/kg body weight respectively.

After one week animal were sacrificed by anaesthetizing them with anaesthetic ether. Blood was withdrawn from retro-orbital plexus and transferred in to small vials. It was left undisturbed to separate the serum for estimation of serum parameters. Before that liver was separated and washed with ringer solution, soaked in filter paper and then transferred into 10 % formalin solution [3].

G. Histopathological observation

Liver tissue collected were used for the preparation of histopathological slides by using microtome and were suitably stained and observed under microscope for architectural changes seen during CCl4 challenge in ethanolic extract of R. arboreum treated and control groups.

III. Statistical Analysis

The data were analysed with one way ANOVA followed by Dunnetts multiple comparison test. A P< 0.05 was considered significant in all the cases.

IV. Result

Effect of ethanolic extract of Euphorbia hirta Linn on CCl4 induced liver damage in rats with reference to biochemical changes in serum are shown in Table I. At the end of the 5th day treatment, blood sample of CCl4 treated control animals showed significant increase in the level of SGPT, SGOT, ALP, compared to normal control. Treatment with Euphorbia hirta Linn extract at 100 and 300 mg/kg showed marked decreased of SGPT, SGOT, ALP, as compared to the CCl4 treated group. The maximum protection was shown by ethanolic extract at the dose of 300 mg/kg body weight (Table I). Bilirubin levels are shown in Table I. The rats exposed to CCl4 showed significant increased levels of bilirubin as compared to control. Treatment with Euphorbia hirta Linn extract showed significant (P < 0.01) decreased level of bilirubin to the near normal which is comparable to the values registered in the standard drug treated (Silymarin) group of animals, indicating the protection of hepatic cells.

The liver cells of group A exhibits normal architecture of hepatocytes their no sign of necrosis or degeneration. Fig 1

The group B rat liver showed cellular degeneration, hydroptic change more around the central veins, fatty changes, wide spread cloudy swelling and hepatocellular necrosis and steatosis. The normal architecture of liver is completely damaged (Fig 2).

The liver cells of group C exhibits normal hepatocytes with central vein (Fig 3). The liver cells of group D were radially arranged. The vaculation is present but is very much similar to that of normal. The hepatic cells are mostly normal but few vaculoes and some damaged cells, but the extent of the area of necrotic cells located in this region was considerably reduced. There seems to be an appreciable recovery (Fig 4). The group E exhibits Nucleuses are not very clear as in normal hepatocytes but as compared to the CCl4 damaged ones the numbers of hepatocytes with normal nucleus are much more. But the extent of the area of necrotic cells located in this region was considerably highly reduced and improved histology of the liver. There seems to be a strong hepatoprotection and recovery (Fig 5).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
<td>Toxic</td>
<td>Std.Drug</td>
<td>(EtOH Extr. 100mg/kg)</td>
<td>(EtOH Extr. 300mg/kg)</td>
</tr>
<tr>
<td></td>
<td>SGPT</td>
<td>SGOT</td>
<td>S.B.</td>
<td>A.P.</td>
<td>SGPT</td>
</tr>
<tr>
<td></td>
<td>(u/l)</td>
<td>(u/l)</td>
<td>(mg/dl)</td>
<td>(u/l)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>24.8</td>
<td>26.6</td>
<td>0.8</td>
<td>85.4</td>
<td>250</td>
</tr>
<tr>
<td>2</td>
<td>±3.55</td>
<td>±3.46</td>
<td>±0.04</td>
<td>±8.39</td>
<td>±15.37*</td>
</tr>
<tr>
<td>3</td>
<td>150.4</td>
<td>400.4</td>
<td>5.4</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>±10.61*</td>
<td>±17.27*</td>
<td>±0.03*</td>
<td>±13.11*</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>78.6</td>
<td>390</td>
<td>0.8</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>±0.32*</td>
<td>±17.38*</td>
<td>±0.02*</td>
<td>±15.37*</td>
<td></td>
</tr>
</tbody>
</table>

V. Discussion

Flavonoids are low molecular weight compounds present in all higher plants. To date, more than 5000 structurally distinct flavonoids have been described. The diversity in their chemical structure confers them a wide range of biological activities. In plants, their function seems to be linked to
protection against ultraviolet radiation, microbial invasion and both insect and mammalian herbivores. Their actions in humans have been the subject of extensive research and they have been described to possess numerous biological activities such as antioxidant, anti-inflammatory, oestrogenic, cytotoxic antitumoral, antiviral [4](Harborne and Williams, 2000) and CNS depressant [5](, 2006). The most relevant clinical data comes from their use in the treatment of bone loss, vascular diseases and cancer [6-9].

The hepatotoxicity induced by CCl4 is due to its metabolite CCl3, a free radical that binds to lipoprotein and leads to peroxidation of lipids of endoplasmic reticulum [10]. The ability of a hepatoprotective drug to reduce the injurious effects or to preserve the normal hepatic physiological mechanisms, which have been disturbed by a hepatotoxin, is the index of its protective effects. The lowering of enzymes level are definite indication of hepatoprotective action of the drug. The present investigation also revealed that the given dose of CCl4 (2 ml/kg b.w.) produced significant elevation in SGPT,SGOT,ALP,Serum Bilirubin indicating all impaired liver function and these parameters have been reported to sensitive indicator of liver injury [11]. Hepatotoxic action of CCl4 begins with changes in endoplasmic reticulum which result in loss of metabolic enzymes located in the intra cellular structure .

The ethanolic extract of E. hirta Linn when administered orally to rats showed a significant dose dependent hepatoprotective activity at 100 and 300 mg/kg.

The histopathological studies are the evidence of efficacy of drug as protectant. Simultaneous treatment of ethanolic extract with CCl4 exhibits less damage to the hepatic cells as compared to the rats treated with CCl4 alone. liver showed cellular degeneration, hydropic change more around the central veins, fatty change, wide spread cloudy swelling and hepatocellular necrosis and steatosis. The normal architecture of liver is completely damaged. The sections of the liver treated with ethanolic extract of E. hirta Linn and CCl4 reveals better hepatoprotective activity, as compared to the CCl4 damaged ones the numbers of hepatocytes with normal nucleus are much more. But the extent of the area of necrotic cells located in this region was considerably highly reduced and improved histology of the liver. The results of histopathological study also support the results of biochemical parameters [12].
Fig. 4 Photomicrograph of liver section from Group D vaculation is present but is very much similar to that of normal.

Fig. 5 Photomicrograph of liver section from Group E Nucleuses are not very clear as in normal hepatocytes.

REFERENCES


