Monitoring of the Interaction of Chromium (VI) on the Growth Profile of Chlorophyceae Marine Microalga *Chlorella vulgaris* in Controlled Laboratory Condition

Sucheta Sadhu¹* and Kirubagaran R.²

Abstract—Chromium (Cr) is ubiquitously present in the aquatic environment. Due to the non degradable nature of metal, it keeps accumulating in the environment after mobilizing through run-offs metallurgical wastewater (June *et al.*, 2010) from source to the sink. As a result of this, the plethora of metal xenobiotics builds-up in the aquatic ecosystem. To maintain the homeostasis of the aquatic ecosystem and its surroundings, the total ion pool is regulated in terms of its mass balance. Monitoring of the environmental and physiochemical parameters of the aquatic system reflects some insight about the aquatic environment but it fails to forecast about the growth profile of the microalgae. Microalgae form the base component of the food chain of the natural environment and are invariably affected by insidious metal ions. Microscopic phytoplankton imbibes these metal ions as nutrient irrespective of their essentiality and eventually participates to various *in situ* assimilatory processes. There are numerous studies available on the interaction of metal and microalgae. The quantitative studies on metal ions are scanty. Recently, many technologies have been opted to mitigate the pollutant generation. Recent studies indicate the detoxification property of microalgae (*Jeewan et al.*, 2014), however, yet there is a need to bridge the lacuna in terms pollutant specificity, suitable species selection, duration of exposure and aftermath fate of the species upon exposure into the particular metal xenobiotics. Use of biological arm to gun down the toxic xenobiotics seems towards a win-win situation.

In this study, we report the interactive effect of Cr (VI) on the Chlorophyceae marine microalga *Chlorella vulgaris* (NIOT-74, NCBI Accession No: JF894250.1) in triplicate against control over the exponential growth phase of the cells on its growth profile and bioconcentration factor in laboratory condition.

Keywords— BCF, *Chlorella vulgaris*, growth profile, Cr (VI).

I. INTRODUCTION

Chromium (VI) is ubiquitously present in the aquatic environment. From various natural and anthropogenic sources Cr (VI) reaches to the aquatic ecosystem through weathering and surface runoff. The nature of metals is conservative which leads to the build-up of metal concentration in aquatic system. Microscopic phytoplankton imbibes these metal ions as nutrient irrespective of their essentiality and eventually incorporates to various *in situ* assimilatory processes. These metals are transported through the food chain and eventually bioaccumulate in the highest trophic level organisms. Studies on the growth profile of the microalgae *Chlorella vulgaris* (NIOT-74, NCBI Accession No: JF894250.1) during the exponential growth phase of the cells on its growth profile and bioconcentration factor in laboratory condition.

II. MATERIALS AND METHODOLOGY

A. The experimental method

The experiment was framed based on the Organization for the Economic Cooperation and Development (OECD 201) protocol.

B. Cultivation of Microalgae and Growth Media

The axenic monoculture of the marine microalga *Chlorella vulgaris* (NIOT-74, NCBI Accession No: JF894250.1) was received from NIOT’s marine microalgal collection bank. The culture was grown in filtered seawater enriched with f/2 media. The cultures were acclimatized in experimental condition upto 5th generation. The experiments were carried out exposing the cells in five dissimilar concentrations of Cr (VI) against control amid 54 µmol m⁻²s⁻¹ photosynthetically active radiation (PAR) intended for 12:12 h (dark: light) photoperiod. The...
cultures were swirled gently thrice daily to prevent cell clumping.

C. Toxicant
Potassium dichromate (K₂Cr₂O₇), MERCK, was used to prepare Cr (VI) stock solution.

D. Treatment
An initial inoculum of the axenic monoculture of *Chlorella vulgaris* was inoculated in the Erlenmeyer flask (500 mL) which contained 200 mL of seawater enriched with f/2 media. The culture flasks consisting of five dissimilar concentrations of Cr (VI) ranging from 50 to 652 µg/mL were supplied in triplicate against control. The five concentrations of Cr (VI) were selected for the above experiment was on the basis of results of a range finding test conducted earlier.

E. Measurement of Growth Parameters
Algal cells, cultured for different durations at various range of concentrations were counted using haemocytometer by visualizing under a microscope (Karl Zeiss Axioscope2).

F. Determination of Dry Weight
Dry weight was measured following the protocol given by Zhu and Lee, 1997. Data were expressed as µg mL⁻¹ algal suspension.

G. Metal Analysis
The uptake of Cr (VI) in cells was determined by ICP-OES (VARIAN 725-ES) after harvesting. Also the corresponding media and matrix were analyzed as prescribed by Grasshoff et al. with little modification. Alga was harvested at 96 h by centrifugation (4000g; ca.10000 rpm) for 15 min. All lyophilized algal biomass was weighed and then digested with concentrated ultra-pure HNO₃ and H₂O₂ (30%) (1:4) in pre cleaned, leaded, 100 mL Teflon vessels. After digestion, the samples were analyzed for metal content by ICP-OES. Blanks and spikes were analyzed to validate the digestion process of spectroscopic analysis, obtaining 95% recovery. In addition, 0.5 µg/mL of multi-elemental standard was analyzed upon every 10 samples to monitor the matrix effects on the analytes and for quality assurance and quality control.

H. Calculation of BCF
The BCF was calculated as defined by Brooks and Rumbsy (1965).

G. Statistics
Results were tested by one-way Analysis of Variance (ANOVA). ANOVA effects and treatments were considered significant when \(p < 0.05 \).

III. RESULTS AND DISCUSSION
Microalgal phenotypic characteristics get impaired due to heavy metal exposure. The results during our investigation reveal that the duration and exposure concentration of heavy metals leads to retardation in growth profile of the exposed microalga. The alga was found to tolerate high concentration (652 µg mL⁻¹) of Cr (VI). The changes observed were found to be significant (\(p < 0.05 \)) at all concentrations and durations as compared to control. All experimental values reported in triplicate and based on Mean ± S.D.

Our results show congruency with the results of Horcsik et al. (2006), June et al., (2010) and Sucheta et al. (2016) too. Metals at lower concentrations is desired for the nutrition of microalgae, however, it is reported that chromium is not an essential (Sharma et al., 2015) metal for microalgal nutrition or to perform cellular functions.
Concentration of Cr (VI) is in increasing order. At harvest, a prominent reduction (Fig4.) of Cr (VI) was observed indicating the bioremoval efficiency of *C. vulgaris*.

![Fig4. Cr (VI) removal profile at 96 h during harvest.](image)

IV. CONCLUSION

In conclusion, in this experiment it is found that the *C. vulgaris* can tolerate up to 652µg/mL of Cr (VI), however % accumulation is very less as the alga is exposed to higher concentration, though the removal efficiency increases with increasing exposure concentration of Cr (VI).

ACKNOWLEDGMENT

The acknowledgment goes to Dr. R. B. N. Prasad, Formerly Director, for extending the ICP-OES facility at IICT, Hyderabad. SS is thankful to the Director, ESSO-National Institute of Ocean Technology, Chennai, to carry out this work as a part of Doctoral studies. The authors thank the Ministry of Earth Sciences, Govt. of India, New Delhi, for financial assistance.

REFERENCES

http://dx.doi.org/10.1023/A:1007914806640

http://dx.doi.org/10.4319/lo.1965.10.4.0521

Sucheta Sadhuv has earned her bachelor’s degree from Assansol Girls’ College under Burdwan University in 2001. She has bagged her Master’s degree from Indian Institute of Ecology and Environment, New Delhi under Sikkim Manipal University of Health Medical and Technological Sciences in 2004 in Ecology and Environmental Science and followed by in 2007 she has earned her M.Phil degree in Environmental Science from the University of Jadavpur, Kolkata. At present she is persuing her Ph. D degree from Sathyabama University, Chennai, India and simultaneously she is working as Project Scientific Assistant in Marine Biotechnology division of ESSO-NIOT, Chennai since 2010 till date.

R. Kirubagarans, Scientist-G, is heading the Marine Biotechnology division of ESSO-NIOT, Chennai. He is a life member in the Indian Science Congress Association. Also, Dr. Kirubagaran is a member of National Biodiversity Authority of Coastal Aquaculture Authority of India. Dr. Kirubagaran is also serving as Member Secretary of the National Task Force on Ballast Water Management.