Actual Evapotranspiration Estimation Using a Penman-Monteith Model

N. C. Sanjay Shekar and Lakshman Nandagiri

Abstract — The present study was taken up to evaluate the applicability of the Penman-Monteith (PM) equation with a simple surface conductance model to estimate latent heat flux (λET) in a humid tropical region. The model has been proposed by previous researchers. The selected study area is the Mae-Klong Watershed Research Station, Kanchanaburi, Thailand where latent heat flux measurements were available from a flux tower. The PM model was applied using ground-based climate data and Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing satellite data products corresponding to the study area. Comparison of estimated and measured fluxes at the tower on eight days in 2004 yielded root mean square error (RMSE) of 16.10 W/m². The satellite-based PM algorithm tested in this study appears to provide reasonably accurate results and may be used to map latent heat flux and actual evapotranspiration at catchment/regional-scales in a cost effective and convenient manner.

Keywords — Evapotranspiration, Latent heat flux, Flux tower, Penman-Monteith equation, MODIS, Sub-humid tropical region

I. INTRODUCTION

Actual Evapotranspiration (AET) is a major component of the hydrological cycle and accounts for 60 percent of the annual water balance in semi-arid climates. Accurate estimation of AET is crucial for agricultural water management, hydrological modeling and environmental assessments. Many efforts have been made in the past decades to estimate AET at various spatial and temporal scales. While reasonably accurate methods to estimate point to field scale AET from agricultural crops are available, methods to estimate catchment to regional scale AET are lacking.

Therefore, efforts are being made to use satellite remote sensing imagery to map AET at regional scales in a convenient and economically feasible manner [1], [4]. Remote sensing data products have been using widely to produce time series information on climatic modeling [3], [9], [15]. These methods use information on biophysical properties of land surfaces data provided by satellite imagery such as MODIS [11] to estimate AET from surface energy balance or physically-based equations such as the Penman-Monteith (PM). Methods based on the energy balance approach are usually more complex and also data intensive, rendering their applicability in data-short situations impractical. The PM equation is a biophysically sound and robust framework for estimating daily ET at regional to global scales using remotely sensed data [8], [16]. However, one of the largest sources of uncertainty in the Penman–Monteith equation is the parameterization of the surface conductance. Therefore, a simple biophysical model for estimation of surface conductance estimation was introduced by Leung et al. [11]. This model uses remotely sensed data on Leaf area index (LAI) data as input to the PM equation to estimate daily AET at kilometre spatial resolution. Validation with flux tower data proved that the method was reasonably accurate [11].

However, in developing countries located in the humid tropics, due to scarcity of ground-based climate measurements, very few studies have been carried out to estimate AET using the satellite-based PM approach. Therefore, the present study proposes to fill this gap in literature by applying the methodology proposed by [11] to a location in the humid tropics and verifying the accuracy of AET estimates with flux tower measurements.

II. STUDY AREA

Latent heat flux measurements required to validate the proposed AET estimation approach were obtained for the Mae-Klong Watershed Research Station, Kanchanaburi located in Thailand. The flux tower at this location is part of the Asia Flux network (asiaflux.net) of towers installed to measure exchanges of carbon dioxide, water vapour and energy in Asia. Latent heat flux is measured using the eddy covariance technique. Instruments on the flux tower at the station are mounted at a height of 42 m. Net radiation is measured using a radiometer, while air temperature is measured using a platinum resistance thermo-meter and water vapour with a capacitive hygrometer. All sensors are logged at sampling frequency of 4 Hz, and fluxes are calculated using half-hourly averaging time. Asia flux database provides measured data for the years 2003 and 2004 for this flux tower. An area of 5 km × 5 km surrounding the flux tower was considered, which lies between 14º33'14" and 14º36'02" North latitudes and 98º39'29" and 98º52'28" East longitudes, with an average elevation of 231 m. The region is covered by tropical seasonal deciduous forest with average canopy height of 30 m. The dominant plant species found here are Shorea siamensis, vitex peduncularis and Xyilia xylocarpa, and the soil type is Kandiustalfs (US soil taxonomy). The climate of the region
according to Koppen’s classification is tropical monsoon. This region experiences mean annual air temperature of 25°C and mean annual precipitation of 1500 mm.

III. DATA PRODUCTS

Satellite images obtained from MODIS sensor mounted on Terra platform were used. MOD11A1 product of LST at 1000 m resolution, MOD09GA product of LSR at 1000 m resolution, MOD15A2 product of LAI is composited every eight days at 1000 m resolution and ASTGTM product of digital elevation model (DEM) at 30 m resolution for the Mae-Klong region are used in the analysis. Images corresponding to the study area for the years 2003 and 2004 during which the flux tower was operational were subject to search and only images free from cloud contamination were used. Accordingly, four dates in summer and four dates in winter of 2004 were selected to evaluate differences in latent heat flux \(\lambda\text{ET} \) as influenced by season. Eight images of the year 2004 for Julian days 65, 81, 89 and 97 in summer and Julian days 329, 337, 345 and 353 in winter. Measured values of \(\lambda\text{ET} \) corresponding to the time of satellite overpass (11.15 hr) were used in comparison with those estimated by the proposed PM algorithm for the location of the flux tower. However, for Julian days 337 and 353, flux values recorded at 13.15 hr and 12.15 hr were used respectively since the \(\lambda\text{ET} \) values at 11.15 hr was unavailable. Preliminary processing of MODIS images was performed using MODIS reprojection tool (MRT) so that all data products are cloud free and converted to standard format that can be read by MATLAB while processing. The tool also permits georeferencing and subsetting corresponding to the study area.

IV. METHODOLOGY

A. \(\lambda\text{ET} \) Estimation using Penman-Monteith (PM) approach

Latent heat flux \(\lambda\text{ET} \) may be estimated using the following form of the PM equation:

\[
\lambda\text{ET} = \frac{[\Delta (Rn - G)] + \rho_a c_p (e_s - e_a)}{\Delta + \gamma \left[1 + \frac{r_s}{r_a}\right]}
\]

where \(\lambda\text{ET} \) = latent heat flux (W/m²), \(r_s \) and \(r_a \) = (bulk) surface and aerodynamic resistances (s/m), \(Rn \) = net surface radiation (W/m²), \(G \) = Soil heat flux (W/m²), \(\Delta \) = slope of saturation vapour pressure versus air temperature curve (kPa/°C), \(\gamma \) = Psychrometric constant (kPa/°C), \(e_s \) and \(e_a \) = Saturation vapor pressure (kPa) and vapor pressure of air (kPa), \(\rho_a \) = mean air density at constant pressure (g/m³) and \(c_p \) = specific heat of the air (J/kg/K).

B. Surface conductance model

Surface resistance \(r_s \) for each pixel was estimated as the inverse of surface conductance \(G_s \) using the formulation proposed by Leuning et al [24],

\[
G_s = \frac{Gi}{(\varepsilon+1)T Gc} + \frac{Ga}{\varepsilon Gi} \left[1+\frac{T Gc}{(\varepsilon+1)T Gc} + \frac{Ga}{\varepsilon Gi}\right] \left[1-T\frac{(\varepsilon+1)(1-f)Gc}{\varepsilon Gi} + \frac{Ga}{\varepsilon Gi}\right]
\]

where emissivity \(\varepsilon = \Delta / \gamma \), Gi = \(\gamma (Rn - G)/(\rho_c c_p D) \) is the iso-thermal conductance (m/s) Monteith and Unsworth [27],

\[
Gc = \frac{Gsx}{kQ} \ln \left[\frac{Qh-Q50}{Qh \exp(-kQLAI)+Q50}\right] \left[1+\frac{D}{D50}\right]
\]

where \(Qh \) = photosynthetically active radiation at the top of canopy (MJ/m²/d), \(Q50 = value \ of \ absorbed \ photosynthetically \ active \ radiation \ when \ g_s = Gsx/2 \ (MJ/m²/d) \), \(D = vapour \ pressure \ deficit \ of \ air (kPa), \ D50 = value \ of \ D \ when \ g_s = Gsx/2 \ (kPa), \) and \(f \) is the fraction of equilibrium evaporation at soil surface (varying between 0 and 1).

C. Actual Evapotranspiration (AET) estimation

The ratio of latent energy to the available energy \((Rn-G) \) is defined as the evaporative fraction (EF), which may be obtained from Equation (1) as:

\[
\text{EF} = \frac{\lambda\text{ET}}{Rn-G}
\]

The actual 24 hour AET can be estimated from the instantaneous evaporative fraction EF, and the daily averaged net radiation \(Rn_{daily} \) (Morse et al., 2000).
\[E_{\text{daily}} = \frac{8.64 \times 10^7 \times \text{EF} (R_{\text{n daily}} - G_{\text{daily}})}{\lambda \rho_w} \]

Where, \(\lambda \) = Latent heat of water (2.47x10^6 J/kg) and \(\rho_w \) = Density of water (1000 kg/m^3)

\[\text{R} = 0.94 \]

VI. CONCLUSIONS

The present study was taken up mainly to test a satellite-based PM algorithm for estimation of AET (or \(\lambda \)ET) proposed by [11]. For the purpose of validation of algorithm, it is been applied in humid tropical region using MODIS satellite data products as inputs. The AET model is developed in a way that it can also be used in data scarce conditions by using only global datasets. The developed algorithm methodology in this study used of MODIS products like LST in place of ground-based air temperature, use of FV in place of NDVI and assumption of a fraction of energy available at the soil as (1-FV).

Pixel-wise estimation of \(\lambda \)ET by using PM algorithm was been validated by applying it in the humid tropical Mae-Klong region, Thailand where flux tower data was available. Comparison of estimated and measured fluxes on eight days in 2004 yielded \(R \) of 0.94 and RMSE of 16.10 W/m^2. The methodology incorporated in the algorithm yielded reasonably good \(\lambda \)ET estimates at this humid tropical location. Hence, the methodology will prove helpful in regional scale monitoring and mapping of AET in humid tropical regions in a convenient and cost effective-manner.

ACKNOWLEDGMENT

The authors thank Dr. Takahisa Maeda, AIST, Japan for providing flux tower data for Mae-Klong region, Thailand, and for granting permission to publish this article.

REFERENCES

http://dx.doi.org/10.15242/IJAAEE.AE0316212

163
http://dx.doi.org/10.1061/(ASCE)0733-9437(2005)131:1(85)

http://dx.doi.org/10.1016/S0022-1694(99)00202-4

http://dx.doi.org/10.1016/S0034-4257(97)00104-1

http://dx.doi.org/10.1016/j.rse.2006.07.007

http://dx.doi.org/10.1016/j.jhydrol.2009.02.013

http://dx.doi.org/10.1016/S0034-4257(02)00096-2

http://dx.doi.org/10.1029/2007WR006562

http://dx.doi.org/10.1016/S0034-4257(00)00205-4

http://dx.doi.org/10.1175/1525-7541(2000)001<0183:AGYBLS>2.0.CO;2

http://dx.doi.org/10.1016/j.rse.2011.02.019

http://dx.doi.org/10.1016/j.rse.2007.04.015

http://dx.doi.org/10.1016/S0034-4257(02)00074-3

http://dx.doi.org/10.1088/0022-3727/4/4/101

http://dx.doi.org/10.1016/j.rse.2010.11.006

http://dx.doi.org/10.1016/S0034-4257(02)00093-7