Processing of Na₂S to Na₂CO₃ and NaHS

Conny P Mokgohloa^{1,2}, Johannes P Maree^{1,3}, M P Motaung⁴, Malose P Mokhonoana²

Abstract— Acid mine drainage (AMD), a notorious kind of pollution associated with both active and abandoned mining sites, needs to be treated with the aim of achieving net zero waste. The ROC (Reverse Osmosis/Cooling) process can be used for the treatment of AMD though neutralization with Na₂CO₃ for the removal of metals, desalination with reverse osmosis (RO), freeze-crystallization for recovering Na₂SO₄ from the RO brine, and processing of Na₂SO₄ to Na₂S. The purpose of this investigation was to identify conditions needed for the processing of Na₂S to Na₂CO₃. It was found that: (i) Na₂S can be reacted with CO₂ to form NaHCO₃(*aq*) and NaHS(*aq*), (ii) the latter two compounds can be separated though freeze-crystallization as NaHCO₃ has a lower solubility at 0°C, and (iii) NaHCO₃ can be converted into Na₂CO₃ though heat-treatment.

Keywords—Freeze-crystallization, NaHCO₃, NaHS, Na₂S

I. INTRODUCTION

Acid mine drainage (AMD) is the most significant environmental pollution problem associated with the mining industry. The high concentration of toxic metals and high levels of acidity in AMD are harmful to the vegetation, aquatic life, terrestrial wildlife, and human beings. Pyrite (FeS₂) is a major constituent of the strata being mined and large rock surfaces become exposed to air and water during mining activities [1]. Pyrite is oxidized to soluble iron complexes and sulphuric acid, catalysed by sulphur-oxidizing bacteria [2], according to the following reaction:

$$2\text{FeS}_{2}(s) + 7\text{O}_{2}(aq) + 2\text{H}_{2}\text{O} \Rightarrow 2\text{Fe}^{2+} + 4\text{SO}_{4}^{2-}(aq) + 4\text{H}^{+}(aq)$$
[1]

Because of its detrimental effects on the environment and public health, it is mandatory to treat acid mine drainage (AMD) with the aim to have zero waste. AMD can be treated by two methods; *viz.*, active treatment and passive treatment. Active treatment includes the use of chemical agents such as limestone (CaCO₃), hydrated lime (Ca(OH)₂), caustic soda (NaOH), soda ash (Na₂CO₃), calcium oxide (CaO), anhydrous ammonia (NH₃), magnesium hydroxide (Mg(OH)₂), and magnesium oxide (MgO) [3] . Passive

Conny P Mokgohloa^{1,2}, ¹Department of Water and Sanitation, University of Limpopo, Private Bag X1106, Sovenga, 0727, South Africa and ²Department of Chemistry, University of Limpopo, Private Bag X1106, Sovenga, 0727, South Africa.

treatment can be further classified into two types: conventional and emerging. Examples of conventional passive treatment are constructed wetlands and anaerobic sulphatereducing bioreactors, while an example of an emerging passive treatment is phytoremediation [3].

The ROC (Reverse Osmosis/Cooling) process can be used for the treatment of AMD through neutralization with Na₂CO₃ for the removal of metals, desalination with reverse osmosis (RO), freeze-crystallization for recovery of Na₂SO₄ from the RO brine and processing of Na₂SO₄ to Na₂S.

In the ROC process, Na₂CO₃ is used for selective recovery of metals through a stepwise increase of the pH, resulting in the formation of Na₂SO₄, which can be recovered from the brine after the reverse osmosis and freeze-crystallization stages. It would be beneficial if the raw material, Na₂CO₃, can be recovered from the product, Na₂SO₄. Since Na₂CO₃ has a high price of R5 000/t, it would be economically beneficial if it can be processed from the product, Na₂SO₄. Mashigwana studied the direct conversion of Na₂SO₄ into Na₂CO₃ under thermal conditions and found that it was not possible, as Na₂SO₄ melted in the same temperature range as where the reduction took place, namely 860 to 920°C [4]. Van Vuuren and Maree proposed that Na₂CO₃ be produced indirectly from CaS or BaS [5]. Various researchers studied the reduction of CaSO₄ and BaSO₄ in depth without experiencing the melting problem of one of the reactants [6, 7, 8, 9, 10, 11]. Mokgohloa at al. studied the reduction of CaSO₄ and founded that Na_2CO_3 can be produced from Na_2SO_4 via CaS [12]. In the indirect method, CaSO₄ precipitates, due to its relatively low solubility, while Na₂S or NaHS remain in solution and are converted into Na₂CO₃ or NaHCO₃ by contacting them with CO₂. A limitation of the CaS route is, however, the partial solubility of CaSO₄·2H₂O (2 440 mg/L). The formed Na₂S is therefore contaminated with Ca²⁺. BaSO₄ offers the benefit that Na₂S will be pure due to the low solubility of BaSO₄ (2.44 mg/L) compared to the 2 640 mg/L in the case of CaSO₄·2H₂O. Less energy is also needed for the conversion of BaSO₄ into BaS (74 027 MJ/h) than for the conversion of CaSO₄ into CaS (136 165 MJ/h).

The purpose of this investigation was to identify the process steps needed for the processing of Na_2S to $NaHCO_3$ and NaHS, when Na_2S is produced *via* the BaS route.

The objectives of this investigation are as follows:

- Convert Na₂SO₄ to Na₂CO₃ via BaS
- Process Na₂S into NaHCO₃ and NaHS
- Process NaHCO₃ into Na₂CO₃

Johannes P Maree ^{1,3} ¹Department of Water and Sanitation, University of Limpopo, Private Bag X1106, Sovenga, 0727, South and ³ROC Water Technologies, P O Box 70075, Die Wilgers, Pretoria, 0041, South Africa.

Neo Motaung⁴, ⁴Department of Chemical, Metallurgical and Materials Engineering, Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria, 0001, South Africa

II. MATERIALS AND METHODS

A. Feedstock, chemicals, and reagents

High purity reagents were used throughout this work for the preparation of samples. Deionised water was used as solvent for all solutions and dilutions. The following chemicals were used: CO_2 gas (Air Liquide, South Africa), 1 M HCl, 0.1 N I₂, 0.1 N Na₂S₃O₄, 1M NaOH, 0.1 M Iodine solution and starch solution.

B. Equipment

Figure 1 showed the experimental set-up that was used when a Na₂S solution was contacted with CO₂.

Figure 1. Schematic diagram of laboratory set-up used for monitoring the precipitation of NaHCO₃ when Na₂S is reacted with CO₂

C. Experimental and Procedure

OLI simulations (OLI ESP software program from OLI Systems, Inc.) were used to determine which compound will precipitate out and which compounds/elements will stay in solution after the mixing of reactant and/or cooling.

Beaker studies were carried out to convert Na₂S into NaHCO₃ and NaHS by reacting it with CO₂. The following procedure was followed in the experiment by using the laboratory set-up as shown in Figure 1 above.

- CO₂ was put in a 300 mL measuring cylinder, with the open end on top of a water bath *via* Line 1.
- Na₂S (0.88 g Na₂S + 4.38 g H₂O; 200 g Na₂S/L H₂O) was put in a 250 mL separation funnel
- Air was removed from the separation funnel with a vacuum pump *via* Line 3 and replaced with CO₂ stored in the 300 mL measuring cylinder *via* Line 2.

- The Na₂S and CO₂ in the separation funnel were allowed to react by shaking it for 15 min. CO_2 additions were repeated 1, 2 and 4 times to determine the effect of CO_2/Na_2S mole ratio on the completion of the reaction.
- The CO₂ in the measuring cylinder was replaced with air.
- The volume of CO_2 reacted with the Na₂S was determined by allowing the air in the measuring cylinder to flow into the 250 mL separation funnel *via* Line 2, which was partially under vacuum due to the CO₂ reaction with Na₂S. The volume of CO₂ reacted was determined by reading the volume of water that was sucked into the 300 mL measuring cylinder.
- Sulphide and alkalinity (Alk) analyses were carried out on filtered liquid samples collected from the separation funnel. Filtered samples were collected by using a 25 mL syringe with a filter tip.

D.Analysis

Sulphide was determined by standard iodometry [13] as follows: A 50 mg sample of the reduced product was weighed, dissolved and made up to 100 mL with deionized water. Then 10 mL of standard iodine solution (0.1 N) was added, followed by 50 mL of deionized water. The resulting mixture was acidified using 2 mL of 5 N HCl solution and subsequently titrated with standard (0.1 N) sodium thiosulphate using starch as indicator to a colourless endpoint. The % NaS in the reduction mixture was calculated as follows:

% NaS = $[V(iodine: 10mL) - Titration volume) \ge 36] \ge 100$ Sample mass (mg)

E. OLI software simulations

The OLI System Chemical Analyser software program was used to predict the behaviour of metals dissolved in water when treated with alkalis such as MgO and NaOH [14]. OLI is an aqueous equilibrium chemistry estimator with an interactive and self-instructive interface for clarifying reactions. It has the ability to work with all kinds of common equilibrium reactions, it has a strong solution algorithm, and expressive and easily understandable displays of results, and the ability to produce results in multiple formats according to different uses. The OLI System Chemical Analyser was used to perform single point equilibrium calculations and multiple point survey calculations. The concentration of the various species in solutions or solids were calculated as a function of temperature, pressure, pH and initial concentrations. The calculations provide liquid- and solid-phase separations for a specialised model.

The OLI Analyser 9.0 System was used to simulate the reactions by running a simulated Acid Rock Drainage (ARD) sample with assumed values of temperature, pressure and pH. The base titrants used were Na₂CO₃, MgCO₃, Mg(OH)₂ and MgO. The effect of temperature on the solubility of MgSO₄ and Na₂SO₄ was determined to represent a scenario where MgO is used for neutralisation to pH 3.2, followed by Na₂CO₃

to raise the pH to 8.6. Once the input values are used in a calculation by the OLI Systems Chem Analyzer, a calculated summary of the simulated results appears. This could be used to predict the actual reactions that will take place under specific conditions and the final concentration of the various chemical species.

III. RESULTS AND DISCUSSION

A. Conversion of Na₂SO₄ to Na₂S via BaS

 Na_2S is the raw material in the formation of Na_2CO_3 , nano $CaCO_3$ and MgO. Since direct conversion of Na_2S from Na_2SO_4 is a problem, it needs to be converted from either CaS or BaS. The reason for the difficult with the direct conversion is Na_2SO_4 melts in the same temperature range, $800^{\circ}C$ to $900^{\circ}C$, where Na_2SO_4 is converted into Na_2S .

The purpose of this section is to identify which one of CaS or BaS would be the most suitable for the production of Na₂S. It is of industrial interest to convert alkali and alkaline earth metal sulphates to its carbonates. The sulphate compounds are generally produced as waste that needs to be stockpiled, while the carbonates are important raw material in industrial processes. BaSO₄ is mined as a raw material and converted to BaCO₃ to be used for glass manufacturing, brick manufacturing, oil-drilling, ceramics, photographic and chemical industries. CaSO₄ is produced in the fertilizer industry when H₂SO₄ is used for leaching H₃PO₄ from Ca₅(PO₄)₃F (phosphate rock) and when SO₄^{2–}-rich acidic effluents are neutralized with Ca(OH)₂ or CaCO₃. Na₂SO₄ is produced when SO₄^{2–} rich acidic effluents are neutralized with Na₂CO₃ or NaOH.

If Na_2S is produced *via* the CaS route, it will contain more CaSO₄ than when produced *via* the BaS, due to the higher solubility of CaSO₄. The purpose of this section is to study the formation of Na_2S from both BaS and CaS. Error! Reference source not found. showed, through OLI simulations, that Na_2S formed stoichiometrically when BaS was reacted with Na_2SO_4 , as indicated by the removal of sulphate from 1 000 mmol/L to 0.3 mmol/L. This finding was also **experimentally** confirmed (

BaS [mmol]	Na2SO4 [mmol]	BaSO4 (Barite) - Sol [mmol] (Y2)	S(+6) Aq [mmol] (Y2)
0.0	1 000.0	0.0	1 000.0
100.0	1 000.0	100.0	900.0
200.0	1 000.0	200.0	800.0
300.0	1 000.0	300.0	700.0
400.0	1 000.0	400.0	600.0
500.0	1 000.0	500.0	500.0
600.0	1 000.0	600.0	400.0
700.0	1 000.0	700.0	300.0
800.0	1 000.0	800.0	200.0

900.0	1 000.0	900.0	100.0				
1 000.0	1 000.0	999.7	0.3				
Temp = 25° C; pH = 12.5 to 13.1							

Table). This experiment was repeated, using OLI simulations, with CaS to determine how effective SO_4^{2-} was removed from solution when precipitated as CaSO₄, instead of BaSO₄.

Parameter	Value
BaS (g)	10.00
Purity (%)	95.00
BaS (meq)	112.43
Na2SO4 (g)	8.40
H2O (mL)	200.00
Na2S (q)	4.37
Na2S (meq)	112.00
NaS production (%)	99.62

showed that in the case of CaS, sulphate was removed from only 1000 mmol/L to only 254.8 mmol/L. The difference in sulphate concentrations was due to the difference in the solubilities of BaSO₄ (0.0285 mg/L)) and CaSO₄·2H₂O (2 640 mg/L).

The above finding showed that the BaS route will be the preferred route for Na_2S production for applications where the presence of sulphate is a problem.

It is thus clear that the BaS-route is the preferred on for processing Na_2SO_4 to Na_2S and the downstream products.

TABLE I. Conversion of Na₂SO₄ into Na₂S *via* BaS (OLI simulation)

BaS [mmol]	Na2SO4 [mmol]	BaSO4 (Barite) - Sol [mmol] (Y2)	S(+6) Aq [mmol] (Y2)						
0.0	1 000.0	0.0	1 000.0						
100.0	1 000.0	100.0	900.0						
200.0	1 000.0	200.0	800.0						
300.0	1 000.0	300.0	700.0						
400.0	1 000.0	400.0	600.0						
500.0	1 000.0	500.0	500.0						
600.0	1 000.0	600.0	400.0						
700.0	1 000.0	700.0	300.0						
800.0	1 000.0	800.0	200.0						
900.0	1 000.0	900.0	100.0						
1 000.0	1 000.0	999.7	0.3						

Temp = 25° C; pH = 12.5 to 13.1

(Lxperimenta	
Parameter	Value
BaS (g)	10.00
Purity (%)	95.00
BaS (meq)	112.43
Na ₂ SO ₄ (g)	8.40
H ₂ O (mL)	200.00
Na ₂ S (q)	4.37
Na ₂ S (meq)	112.00
NaS production (%)	99.62

Table II Conversion of Na₂SO₄ into Na₂S via BaS

TABLE III. Conversion of Na₂SO₄ into Na₂S *via* CaS (Temp $= 25^{\circ}$ C; pH = 12.5 - 12.4) (OLI simulation)

CaS [mmol]	Na2SO4 [mmol]	CaSO4•2H2O (Gypsum) [mmol] (Y2)	Ca(OH)2 (Portlandite) - Sol [mmol] (Y2)	S(+6) Aq [mmol] (Y2)
0.0	1 000.0	0.0	0.0	1 000.0
100.0	1 000.0	81.6	0.0	918.4
200.0	1 000.0	178.9	0.0	821.1
300.0	1 000.0	269.1	6.7	730.9
400.0	1 000.0	346.7	26.5	653.3
500.0	1 000.0	421.9	48.0	578.1
600.0	1 000.0	494.5	71.5	505.5
700.0	1 000.0	563.7	97.3	436.3
800.0	1 000.0	629.1	125.6	370.9
900.0	1 000.0	689.9	156.9	310.1
1 000.0	1 000.0	745.2	191.2	254.8

Temp = 25° C; pH = 12.5 to 12.4

B. Solubilities

The production of NaHCO₃ and NaHS from the reactants, Na_2S and CO_2 (Eq. 3) is influenced by the solubility of the reactant, Na_2S and the products, $NaHCO_3$ and NaHS ().

$$Na_2S + 2CO_2 + 2H_2O \rightarrow 2NaHCO_3 + H_2S$$
[3]

Compound	Temp	Solub	Table No	
	(°C)	mmol/L	mmol/L g/L	
Na2S	25.0	2619.8	204.3	7
Na2S	80.0	6101.3	475.9	7
NaHCO3	25.0	1109.5	86.5	8

NaHCO3	0.0	640.2	49.9	9
NaHS	25.0	88203.0	4939.4	10

and

showed the behaviour of Na₂S added to water in steps of 1 000 mmol/L (78 g/L). Na₂S dissolved completely below the solubility of 2 619.8 mmol/L (204.3 g/L). At higher dosages a portion of the Na₂S will remain as a hydrated solid in suspension, first as Na₂S·9H₂O and then as Na₂S·5H₂O as more water is available.

shows the effect of temperature on the solubility of Na₂S. When 6 000 mmol (468 g) Na₂S is contact with 1 kg H₂O, it is observed that: (i) Na₂S·9H₂O formed at temperatures below 40°C when the solubility is exceeded, (ii) Na₂S·5H₂O formed at temperatures above 40°C when the solubility is exceeded, (iii) free water increased from 1 934 to 54 573 mmol as the temperature increased due to increased solubility of Na₂S, (iv) the solubility of Na₂S increase from 107.1 g/L to 475.9 g/L as the temperature increased from 0°C to 80°C

TABLE and

showed the solubility of NaHCO₃, namely 1 109.5 mmol/L (86.5 g/L) at 25°C and 640.2 mmol/L (49.9 g/L) at 0°C respectively.

showed that **NaHS** has a solubility of 88 203 mmol/L (90 000 - 1 797) or 4 939 g/L NaHS. At higher concentrations NaHS decompose into Na₂S and H₂S (Eq. 4).

$$2NaHS \rightarrow Na_2S + H_2S$$
 [4]

TABLE	E IV.	Solubil	ity	of N	a_2S ,	Na	HCO ₃	and	l NaHS	(0	LI)
	~					~ -					

Compound	Temp	Solub	Table No	
	(°C)	mmol/L	g/L	
Na ₂ S	25.0	2619.8	204.3	7
Na ₂ S	80.0	6101.3	475.9	7
NaHCO3	25.0	1109.5	86.5	8
NaHCO ₃	0.0	640.2	49.9	9
NaHS	25.0	88203.0	4939.4	10

TABLE	V.	Solubility	of Na ₂ s	S (higher	· concentrations	5)	(OLI)
-------	----	------------	----------------------	-----------	------------------	----	-------

Na2S [mmol]	Na2S [g/L]	S(-2) Aq [mmol] (Y2)	Na2S·9H2O [mmol] (Y2)	Na2S•5H2O [mmol] (Y2)	H2O [mmol] (Y2)
0	0	0	0	0	55 508
1 000	78	1 000	0	0	55 364
2 000	156	2 000	0	0	55 311

3 000	234	2 393	607	0	49 841
4 000	312	1 638	2 362	0	34 106
5 000	390	882	4 118	0	18 372
6 000	468	127	5 873	0	2 637
7 000	546	0	5 127	1 873	0
8 000	624	0	3 877	4 123	0
9 000	702	0	2 627	6 373	0
10 000	780	0	1 377	8 623	0

Temp = 25° C; pH = 13.1 to 15.6

TABLE VI. Solubility of Na₂S (lower concentration (OLI)

Na2S [mmol]	Na2S [g/L]	S(-2) Aq [mmol] (Y2)	Na2S-9H2O [mmol] (Y2)	Na2S·5H2O [mmol] (Y2)	H20 [mmol] (Y2)
0	0	0	0	0	55 508
300	23	300	0	0	55 425
600	47	600	0	0	55 393
900	70	900	0	0	55 371
1 200	94	1 200	0	0	55 352
1 500	117	1 500	0	0	55 336
1 800	140	1 800	0	0	55 321
2 100	164	2 100	0	0	55 307
2 400	187	2 400	0	0	55 293
2 700	211	2 620	80	0	54 562
3 000	234	2 393	607	0	49 841

Temp = 25° C; pH = 12.8 to 13.6

TABLE VII. Effect of temperature on the solubility of Na₂S

		((OLI)		
Temperature [°C]	Na2S [mmol] (Y2)	NaS2 soluble (g)	NaS2 solubility (g/L)	Na2S.9H2O [mmol] (Y2)	Na2S·5H2O [mmol] (Y2)
0	6000	3.7	107.1	5 952.2	0.0
10	6000	5.5	143.3	5 929.2	0.0
20	6000	8.1	184.7	5 896.2	0.0
30	6000	12.2	233.4	5 843.5	0.0
40	6000	20.5	295.7	5 736.9	0.0
50	6000	301.6	376.6	0.0	2 134
60	6000	375.3	425.0	0.0	1 189

70	6000	468.0	474.8	0.0	0.0
80	6000	468.0	475.9	0.0	0.0

Note Na₂S solubility (g/L) = Na₂S soluble x 55 500 / mmol H_2O ; pH = 14.1 to 13.1

TABLE VIII. Solubility of NaHCO3 at 25°C(OLI)

NaHCO3 [mmol]	NaHCO3 (g/L)	NaHCO3 (Nahcolite) - Sol [mmol] (Y2)	Na(+1) Aq [mmol] (Y2)	C(+4) Aq [mmol] (Y2)
0	0.0	0	0	0
300	25.2	0	300	300
600	50.4	0	600	600
900	75.6	0	900	900
1200	100.8	0	1 200	1 200
1500	126.0	196	1 304	1 304
1800	151.2	496	1 304	1 304
2100	176.4	796	1 304	1 304
2400	201.6	1 096	1 304	1 304
2700	226.8	1 396	1 304	1 304
3000	252.0	1 696	1 304	1 304

Temp = 25° C; pH = 7.95 to 7.74

TABLE IX Solubility of NaHCO3 at 0°C(OLI)

NaHCO3 [mmol]	NaHCO3 (g/L)	NaHCO3 (Nahcolite) - Sol [mmol] (Y2)	Na(+1) Aq [mmol] (Y2)	C(+4) Aq [mmol] (Y2)
0	0.0	0	0	0
300	25.2	0	300	300
600	50.4	0	600	600
900	75.6	0	900	900
1200	100.8	280	920	920
1500	126.0	580	920	920
1800	151.2	880	920	920
2100	176.4	1180	920	920
2400	201.6	1480	920	920
2700	226.8	1780	920	920
3000	252.0	2080	920	920

Temp = 0° C; pH = 8.19 to 8.04

TABLE X. Solubility of NaHS (OLI)

[] NaHS	Hq	Na2S - Sol [mmol] (Y2)	S(-2) Aq [mmol] (Y2)	H2S - Vap [mmol] (Y2)	HS-1 [mmol] (Y2)
0	7.0	0.0	0	0.0	0
10 000	9.7	0.0	10 000	0.0	9 994
20 000	9.9	0.0	20 000	0.0	19 998
30 000	10.3	0.0	30 000	0.2	29 999
40 000	10.6	0.0	40 000	0.1	40 000
50 000	10.9	0.0	50 000	0.0	50 000
60 000	11.3	0.0	60 000	0.0	60 000
70 000	11.6	0.0	70 000	0.0	70 000
80 000	12.1	0.0	80 000	0.0	80 000
90 000	12.5	1 796.8	86 406	1 796.8	86 406
100 000	12.5	6 796.8	86 406	6 796.8	86 406

Temp. = $25^{\circ}C$

C. Reaction between Na₂S and CO₂

Error! Reference source not found. showed that 10 000 mmol Na₂S (780 g Na₂S) will react with 1 L H₂O to form 1 377 mmol Na₂S.9H₂O and 8 622.9 mmol Na₂S·5H₂O at pH 12.2, with no free H₂O left. A reason why a portion of the Na₂S was converted to Na₂S·5H₂O and not Na₂S·9H₂O, was due to the availability of water. Upon addition of 6 000 mmol CO₂ to pH 9.3, 2 656 mmol Na₂CO₃, NaHCO₃·2H₂O formed. By increasing the CO₂ dosage to 20 000 mmol, 18 417 mmol NaHCO₃ and 8 875 mmol H₂S formed (Eq. 1). The solid NaHCO₃ can be converted into Na₂CO₃ and H₂S to elemental sulphur.

CO2 [mmol]	Na2S [mmol] (Y2)	Hq	NaHCO3 (Nahcolite) - Sol [mmol] (Y2)	Na2CO3·NaHCO3·2H2O - Sol [mmol] (Y2)	NaHCO3 - Aq [mmol] (Y2)	Na2S·9H2O [mmol] (Y2)	Na2S·5H2O [mmol] (Y2)	H2S - Vap [mmol] (Y2)	H2S - Aq [mmol] (Y2)
0	10 000	15.6	0	0	0.0	1 377	8 623	0	0.00
2 000	10 000	12.2	0	0	0.2	9	5 873	0	0.00
4 000	10 000	12.2	0	0	0.4	0	1 875	0	0.00
6 000	10 000	11.2	0	2 018	2.7	0	0	0	0.05
8 000	10 000	9.3	2 399	2 656	30.8	0	0	868	4.09

10 000	10 000	9.3	9 691	0	33.8	0	0	225	4.51
12 000	10 000	9.2	11 736	0	46.0	0	0	2 151	6.80
14,000	10.000	9.0	13 747	0	64.6	0	0	4.083	10.66
14 000	10 000	9.0	13 /4/	0	04.0	0	0	4 085	10.00
16 000	10 000	8.7	15 693	0	93.6	0	0	5 999	17.33
18 000	10 000	8.4	17 417	0	135.5	0	0	7 766	27.69
20 000	10 000	8.1	18 417	0	172.0	0	0	8 875	34.80

Temp = 25°C

showed the same result as in Error! Reference source not found. except that in the case of a lower Na_2S concertation (2 500 mmol/kg H_2O and less), no $Na_2S \cdot 9H_2O$ or $Na_2S \cdot 5H_2O$ formed due to the availability of sufficient water.

NaHCO₃ has a lower solubility at 0°C (640.2 mmol/L or 49.9 g/L;

) than at 25°C (1 109.5 mmol/L or 86.5 g/L;

TABLE). Therefore, it may be beneficial to separate NaHCO₃ from NaHS at 0°C, rather than at room temperature. Error! Reference source not found. showed that 2 119 mmol NaHCO₃ formed at 0°C, which is more than the 1 941 mmol NaHCO₃ that formed at $25^{\circ}C$ (

C02 [mmol]	Na2S [mmol] (Y2)	Hq	NaHCO3 (Nahcolite) - Sol [mmol] (Y2)	Na2CO3·NaHCO3·2H2O - Sol [mmol] (Y2)	NaHCO3 - Aq [mmol] (Y2)	Na2S·9H2O [mmol] (Y2)	Na2S·5H2O [mmol] (Y2)	H2S - Vap [mmol] (Y2)	H2S - Aq [mmol] (Y2)
0	10 000	15.6	0	0	0.0	1 377	8 623	0	0.00
2 000	10 000	12.2	0	0	0.2	9	5 873	0	0.00
4 000	10 000	12.2	0	0	0.4	0	1 875	0	0.00
6 000	10 000	11.2	0	2 018	2.7	0	0	0	0.05
8 000	10 000	9.3	2 399	2 656	30.8	0	0	868	4.09
10 000	10 000	9.3	9 691	0	33.8	0	0	225	4.51
12 000	10 000	9.2	11 736	0	46.0	0	0	2 151	6.80
14 000	10 000	9.0	13 747	0	64.6	0	0	4 083	10.66
16 000	10 000	8.7	15 693	0	93.6	0	0	5 999	17.33
18 000	10 000	8.4	17 417	0	135.5	0	0	7 766	27.69
20 000	10 000	8.1	18 417	0	172.0	0	0	8 875	34.80

 $Temp = 25^{\circ}C$

). Due to the small benefit associated with cooling to 0° C, it is recommended that the reaction be carried out at room temperature.

The optimum concentration needs to be determined for the production of NaHCO₃ from Na₂S and CO₂.

CO2 [mmol]	Na2S [mmol] (Y2)	Hq	NaHCO3 (Nahcolite) - Sol [mmol] (Y2)	NaHCO3 - Aq [mmol] (Y2)	HCO3-1 [mmol] (Y2)	HS-1 [mmol] (Y2)	H2S - Aq [mmol] (Y2)	S-2 [mmol] (Y2)
0	2 500	14.1	0	0	0.0	96	0.0	951.1
250	2 500	13.4	0	0	0.0	510	0.0	841.5
500	2 500	13.0	0	0	0.0	1 004	0.0	725.6
750	2 500	12.8	0	0	0.0	1 502	0.0	627.0
1 000	2 500	12.6	0	0	0.1	2 001	0.0	498.8
1 250	2 500	11.0	0	9	4.1	2 487	0.2	12.8
1 500	2 500	9.7	233	178	86.6	2 496	2.9	0.7
1 750	2 500	9.7	710	192	95.2	2 496	3.1	0.7
2 000	2 500	9.7	1 187	206	104.0	2 496	3.2	0.7
2 250	2 500	9.6	1 665	219	112.2	2 495	4.0	0.6
2 500	2 500	8.7	2 119	230	117.5	2 467	32.8	0.1

Temp = 0°C; Pressure = 1 atm

showed that showed NaHCO₃ (nahcolite) formed at concentration up to 10 000 mmol/kg water. At higher dosages the complex Na_2CO_3 ·NaHCO₃ formed.

TABLE XI. Reaction between 10 000 mmol Na₂S and CO₂ at 25°C (OLI simulation)

CO2 [mmol]	Na2S [mmol] (Y2)	Hq	NaHCO3 (Nahcolite) - Sol [mmol] (Y2)	Na2CO3·NaHCO3·2H2O - Sol [mmol] (Y2)	NaHCO3 - Aq [mmol] (Y2)	Na2S-9H2O [mmol] (Y2)	Na2S-5H2O [mmol] (Y2)	H2S - Vap [mmol] (Y2)	H2S - Aq [mmol] (Y2)
0	10 000	15.6	0	0	0.0	1 377	8 623	0	0.00
2 000	10 000	12.2	0	0	0.2	9	5 873	0	0.00
4 000	10 000	12.2	0	0	0.4	0	1 875	0	0.00
6 000	10 000	11.2	0	2 018	2.7	0	0	0	0.05
8 000	10 000	9.3	2 399	2 656	30.8	0	0	868	4.09
10 000	10 000	9.3	9 691	0	33.8	0	0	225	4.51
12 000	10 000	9.2	11 736	0	46.0	0	0	2 151	6.80
14 000	10 000	9.0	13 747	0	64.6	0	0	4 083	10.66
16 000	10 000	8.7	15 693	0	93.6	0	0	5 999	17.33
18 000	10 000	8.4	17 417	0	135.5	0	0	7 766	27.69
20 000	10 000	8.1	18 417	0	172.0	0	0	8 875	34.80

 $Temp = 25^{\circ}C$

TABLE XII Reaction between 2 500 mmol Na_2S and CO_2 at 25°C (OLI simulation)

CO2 [mmol]	Na2S [mmol] (Y2)	Hq	NaHCO3 (Nahcolite) - Sol [mmol] (Y2)	NaHCO3 - Aq [mmol] (Y2)	HCO3-1 [mmol] (Y2)	HS-1 [mmol] (Y2)	H2S - Aq [mmol] (Y2)	S-2 [mmol] (Y2)
0	2 500	13.6	0	0	0	220	0.00	2 280
250	2 500	13.1	0	0	0	571	0.00	1 929
500	2 500	12.7	0	0	0	1 029	0.00	1 471
750	2 500	12.4	0	0	0	1 512	0.00	988.2
1 000	2 500	12.0	0	1	1	2 002	0.01	497.9
1 250	2 500	10.8	0	16	24	2 460	0.11	39.4
1 500	2 500	9.7	77	168	257	2 495	1.47	3.2
1 750	2 500	9.6	557	179	265	2 495	2.06	2.5
2 000	2 500	9.4	1 034	190	274	2 495	3.24	1.8
2 250	2 500	9.1	1 506	203	285	2 492	6.68	1.0
2 500	2 500	8.3	1 942	216	299	2 458	41.83	0.2

TABLE XIII Reaction between 2 500 mmol Na₂S and CO₂ at 0° C (OLI simulation)

CO2 [mmol]	Na2S [mm0]] (Y2)	Hq	NaHCO3 (Nahcolite) - Sol [mmol] (Y2)	NaHCO3 - Aq [mmol] (Y2)	HCO3-1 [mmol] (Y2)	HS-1 [mmol] (Y2)	H2S - Aq [mmol] (Y2)	S-2 [mmol] (Y2)
0	2 500	14.1	0	0	0.0	96	0.0	951.1
250	2 500	13.4	0	0	0.0	510	0.0	841.5
500	2 500	13.0	0	0	0.0	1 004	0.0	725.6
750	2 500	12.8	0	0	0.0	1 502	0.0	627.0
1 000	2 500	12.6	0	0	0.1	2 001	0.0	498.8
1 250	2 500	11.0	0	9	4.1	2 487	0.2	12.8
1 500	2 500	9.7	233	178	86.6	2 496	2.9	0.7
1 750	2 500	9.7	710	192	95.2	2 496	3.1	0.7
2 000	2 500	9.7	1 187	206	104.0	2 496	3.2	0.7
2 250	2 500	9.6	1 665	219	112.2	2 495	4.0	0.6

2 500	2 500	8.7	2 1 1 9	230	117.5	2 467	32.8	0.1

Temp = 0° C; Pressure = 1 atm

TABLE XIV Reaction between 0 to 20 000 mmol Na₂S and 0 to 20 000 mmol CO₂ at 25°C (OLI simulation)

CO2 [mmol]	Na2S [mmol] (Y2)	Hq	NaHCO3 (Nahcolite) - Sol [mmol] (Y2)	Na2CO3·NaHCO3·2H2O - Sol [mmol] (Y2)	H2S - Vap [mmol] (Y2)	CO2 - Vap [mmol] (Y2)	S(-2) Aq [mmol] (Y2)
0	0	7.0	0	0	0	0.00	0
2 000	2 000	8.3	1 358	0	0	0.00	2 000
4 000	4 000	8.6	3 599	0	29	0.48	3 971
6 000	6 000	8.8	5 697	0	80	0.39	5 920
8 000	8 000	9.1	7 722	0	142	0.26	7 858
10 000	10 000	9.3	9 691	0	225	0.17	9 775
12 000	12 000	9.3	3 210	4 274	4 446	3.31	7 554
14 000	14 000	9.5	0	6 903	7 059	2.71	6 941
16 000	16 000	9.8	0	7 896	8 091	0.92	7 909
18 000	18 000	10.1	0	8 851	9 143	0.36	8 857
20 000	20 000	10.5	0	9 706	10 291	0.20	9 709

 $Temp = 25^{\circ}C$; Pressure = 1 atm

D.Separation of NaHCO₃ and NaHS

NaHCO₃ can be recovered from a NaHCO₃/NaHS solution by using the solubility differences (Error! Reference source not found.).

showed the removal of NaHCO₃ after the 200 g/L Na₂S (30 g/150 mL) was reacted with the equivalent CO₂ (8.62 L CO₂/30 g Na₂S).

OLI simulations showed that 200 g/L Na₂S can dissolve in water at 25°C. An experiment was planned to confirm that sulphide will remain in solution when contacted with CO₂.

showed the experimental results when a 50 mL Na₂S solution was contacted with 250 mL CO₂ (at STP), where the CO₂/Na₂S mole ratios varied between 5 and 0.5. It was noted that the sulphide in solution as measured with the iodine method corresponded closely with the Na₂S that was prepared, as expected from Eq. 5.

$$Na_2S + CO_2 + H_2O \rightarrow NaHS + NaHCO_3$$
 [5]

The results above obtained from OLI simulations, and confirmed experimentally showed that N_2S has a high solubility of 204.3 g/L (Error! Reference source not found.) and that it can be determined through sulphide analyses (as Na_2S) (Eq 6) or Alkalinity analyses (as Na_2S) (Eq 7).

$$\begin{array}{l} Na_{2}S \ (mg/L) = \underline{eq. \ mass \ of \ Na_{2}S \ x \ (V_{12} \ x \ N_{12} \ - \ V_{5203} \ x \ N_{5203})} \ x \ 1000 \\ Sample \ Vol \end{array} \tag{6}$$

 $\begin{array}{l} = 78 \ / \ 2 \ x \ (10 \ x \ 0.096 - 4.6 \ x \ 0.1) \ x \ 1000 \ / \ 0.1 \\ Na_2S \ (mg/L) & = \underline{eq. \ mas \ of \ Na_2S \ x \ V_{HCl} \ x \ N_{HCl} \ x \ 1000 \\ Sample \ Vol \end{array}$

$$= 78/2 \times 5 \times 1 \times 1000/1$$

[7]

TABLE XV Sulphide in solution after Na₂S has reacted with CO₂ (experimental)

Na ₂ S prepared	Na ₂ S prepared	Na ₂ S	CO ₂ /Na ₂ S ratio	Volume	рН	Sulphide measured
mg Na ₂ S/ 50 mL	g Na ₂ S/L	meq/50mL		mL		mg Na ₂ S/50mL
174	3.5	4.5	5.0	50	12.1	166
435	8.7	11.2	2.0	50	12.0	410
871	17.4	22.3	1.0	50	11.5	819
1 741	34.8	44.6	0.5	50	11.4	1 716

CO_2 volume = 250 mL

Error! Reference source not found. also showed that: (i) the Na₂S concentration, determined with both the sulphide and the alkalinity methods, to be 195 g/L (as Na₂S), which corresponded closely with the nominal concentration of the prepared solution, i.e., 200 g/L (as Na₂S), (ii) Sulphide remained in solution, as expected from Eq 5. It is only converted from S²⁻ to HS⁻, and (iii) NaHCO₃ precipitated according to Eq. 5 when Na₂S reacts with CO₂, as indicated by the reduction of Alk from 136 500 mg/L (as Na₂S) at a CO₂/Na₂S mole ratio of 1, to 113 100 (as Na₂S) at a CO₂/Na₂S mole ratio of 4. The reason for why the Alk was not already lower at a ratio of 1 can be ascribed to incomplete mixing between the large volume of CO₂ needed (250 mL) and the small volume of the concentrated Na₂S solution (4.3 mL of a 200 g/L Na₂S solution). This challenge was overcome by bubbling CO₂ through a 100 mL solution of 200 g/L Na₂S.

showed how the pH dropped from 13.1 to 8.2 as CO_2 was added, the Na₂S concentration remained constant around 195 975 mg/L Na₂S, as S²⁻ was converted to HS⁻ and Alk decreased by 50% as NaHCO₃ precipitated (from 198 900 to 93 600), according to Eq. 5.

TABLE XVI Effect of CO₂ addition to a Na₂S solution of 200 g/L Na₂S (Experimental)

Reactants	Mass (g)	CO ₂ /Na ₂ S mole ratio				
		Feed	1.00	2.00	4.00	
Na ₂ S (g)	200	0.88	0.88	0.88	0.88	
H ₂ O (g)	1 000	4.38	4.38	4.38	4.38	
$CO_2(g)$	113	0.49	0.49	0.99	1.97	
$CO_2 (mL)$		251.3	251.3	502.6	1 005	
Parameters						

рН	13.1	10.6	9.5	8.7
Sulphide (mg/L Na ₂ S)	195 000	206 700	198 900	187 200
Alkaliniity (mg/L Na ₂ S)	195 000	136 500	120 900	113 100

 $Temp = 25^{\circ}C$

TABLE XVII NaHCO₃ precipitation when CO₂ is bubbled through a 200 g/L Na₂S solution (100 mL) (Experimental)

Time	pН	S ²⁻	Alk
min		mg/L Na ₂ S	mg/L Na ₂ S
0	13.1	198 900	198 900
5	12.1	202 800	167 700
10	11.1	191 100	159 900
15	10.0	200 850	140 400
20	9.1	195 000	117 000
21	8.2	187 200	93 600
Average		195 975	

E. Na₂CO₃ from NaHCO₃

showed the conversion of NaHCO₃ to Na₂CO₃. It is noted that the double salt, Na₂CO₃·NaHCO₃·2H₂O, formed (Eq. 8). 3NaHCO₃ + H₂O \rightarrow Na₂CO₃·NaHCO₃ + CO₂ + 2H₂O [8]

TABLE XVIII Conversion of NaHCO₃ to Na₂CO₃·NaHCO₃ (OLI simulation).

NaHCO3 [mmol] (Y2)	H2O [mmol]	NaHCO3 (Nahcolite) - Sol [mmol] (Y2)	Na2CO3·NaHCO3·2H2O - Sol [mmol] (Y2)	Na(+1) Aq [mmol] (Y2)	H2O - Vap [mmol] (Y2)	CO2 - Vap [mmol] (Y2)
500	55 500	0	0.0	500	29 279	204
500	50 505	0	0.0	500	28 118	206
500	45 510	0	0.0	500	26 750	209
500	40 515	0	0.0	500	25 143	212
500	35 520	0	0.0	500	23 263	214
500	30 525	0	0.0	500	21 082	217
500	25 530	0	0.0	500	18 589	219
500	20 535	0	0.0	500	15 810	221
500	15 540	0	31.5	406	13 006	211
500	10 545	0	163.4	10	10 321	168

Temp = 100° C; pH = 9.46

IV. CONCLUSIONS

It was found that: (i) The production Na₂S via BaS is preferred above Na₂S via CaS due to less CaSO4 left in solution, (ii) Na₂S can be reacted with CO₂ to form NaHCO₃(*aq*) and NaHS(*aq*), (iii) the latter two compounds can be separated through freeze-crystallization, as NaHCO₃ has a lower solubility at 0°C, and (iv) NaHCO₃ can be converted into Na₂CO₃ though heating via Na₂CO₃·NaHCO₃·2H₂O.

ACKNOWLEDGMENT

The authors thank TIA Seed Fund, F'SAGRI and the Department of Trade and Industry and Competition (dtic) for financial support, and NIPMO, who sponsored the grant for the innovation award of 2021 NSTF-South32, that was received by ROC Water.

V.REFERENCES

 I. Sasowsky, A. Foos and C. Miller, "Lithic controls on the removal of iron and remediation of acidic mine drainage," Water Research, vol. 34, no. 10, pp. 2742-2746, 2000.

https://doi.org/10.1016/S0043-1354(00)00019-1

[2] D. Sawyer, R. Fleck, M. Lanphere, R. Warren, D. Broxton and M. Hudson, "Episodic caldera volcanism in the Miocene southwestern Nevada volcanic field: Revised stratigraphic framework, 40Ar/39Ar geochronology, and implications for magmatism and extension.," Geological Society of America Bulletin, vol. 106, no. 10, pp. 1304-1318, 1994.

https://doi.org/10.1130/0016-7606(1994)106<1304:ECVITM>2.3.CO;2

[3] A. RoyChowdhury, D. Sarkar and R. Datta, "Remediation of acid mine drainage-impacted water," Current Pollution Reports, vol. 3, no. 1, pp. 131-141, 2015.

https://doi.org/10.1007/s40726-015-0011-3

- [4] L. Mashigwana, "Processing of sodium sulphate to sodium carbonate," Tshwane University of Technology (Thesis in progress), Pretoria, 2021.
- [5] D. S. van Vuuren and J. P. Maree, "Production of sodium carbonate from sodium sulphate". South Africa Patent 2020/07178, 18 November 2020.
- [6] N. R. Mbhele, W. van der Merwe, J. P. Maree and D. Theron, "Recovery of Sulphur from Waste Gypsum," in 9th International Mine Water Conference, Pretoria, South Africa, 2009.
- [7] S. Ruto, J. P. Maree, C. M. Zvinowanda, A. V. Kolesnikov and W. J. Louw, "Thermal studies on gypsum in a pilot-scale, rotary kiln," Ingwenyama Conference & Sport Resort, White River, 15 – 17 February 2011.
- [8] S. J. Ruto, J. P. Maree, C. M. Zvinowanda and W. J. Louw, "Thermal studies on gypsum in a pilot- scale rotary kiln," Cape Town, South Africa, 2012.
- [9] S. Ruto, J. P. Maree, M. de Beer, E. Hardwick, J. Hardwick, A. Kolesnikov, R. K. Tewo, C. J. S. S Fourie and B. Steytler, "Chemical/resin desalination of mine water," in Water Institute of Southern Africa (WISA), Durban, 2016.
- [10] R. K. Tewo, J. P. Maree, R. S. H. L. Rutto and L. K. Koech, "The gypsum reduction process and its validation using the Mintek Pyrosim model," Chemical Engineering Communications, vol. 204, no. 12, pp. 1412-1419, 2017.

https://doi.org/10.1080/00986445.2017.1365064

[11] R. K. Tewo, J. P. Maree, A. V. Kolesnikov, S. J. Ruto and G. B. Mohajane, "The effect of hydrogen sulphide gas on the dissolution of calcium sulphide in the production of calcium carbonate and elemental sulphur," Mbombela, 2014.

- [12] C. P. Mokgohloa, J. P. Maree, D. S. van Vuuren, K. D. Modibane and M. M. M. Mujuru, "Recovery of Na2CO3 and nano CaCO3 from Na2SO4 and CaSO4 wastes," in Nano Technology, New York, Wiley Scrivener, 2022, pp. 1-2.
- [13] APHA, Standard methods for the examination of water and wastewater, 12th ed, Washington, DC: American Public health Association, 2012.
- [14] OLI, "http://www.olisystems.com/.," 23 11 2015. [Online]. [Accessed 2015].

Mokgohloa Conny Putsane was born at Ga Mothapo, Limpopo South Africa on the 27th of July 1992. She became a servant at Potters House Church in the I CARE UNIT (2021) and a fellow mentee at Sasol-Inzalo (2015-2019).

She received her BSc in 2014, BSc Honors in Chemistry in 2015 and MSc in chemistry in 2019 from University of Limpopo, SA, under the direction of Dr AA Ambushe with an emphasis in analytical chemistry. During her Honors and master's program she tutored and mentored undergraduate chemistry students. She also served as a laboratory assistant where she prepared test solutions, compounds, reagents for conducting tests and advising and coordinating test procedures, laboratory report critique and marking, roll call and lab attendance marking and cleaning and maintaining lab equipment. Her publications include:

- Mokgohloa, C.P., Thomas, M.S., Mokgalaka, N.S. and Ambushe, A.A., 2020. Speciation of chromium in river sediments by graphite furnace-atomic absorption spectrometry after microwave-assisted extraction. International Journal of Environmental Analytical Chemistry, pp.1-15.
- Mokgohloa, C.P., Thomas, M.S., Mokgalaka, N.S. and Ambushe, A.A., 2020. Speciation of inorganic chromium in river water by graphite furnace-atomic absorption spectrometry after chromabond NH₂ column based solid phase extraction. International Journal of Environmental Analytical Chemistry, pp.1-16.
- Mokgohloa, C.P., Maree, J.P., van Vuuren, D.S., Modibane, K.D., Mujuru, M. and Mokhonoana, M.P., 2022. Recovery of Na₂CO₃ and Nano CaCO₃ from Na₂SO₄ and CaSO₄ Wastes. Application of Nanotechnology in Mining Processes: Beneficiation and Sustainability, pp.197-235.

Currently, she is a research assistant and a Ph.D. candidate at University of Limpopo where she independently executes a series of experiments to test hypothesis related to project outcomes. Her Ph.D. in chemistry focuses on thermal processing of solid wastes to recover sealable products with the aim to have zero waste.

Ms Mokgohloa is a member of SACI. Part of her research (ROC Technology) was acknowledged by NSTF-South32 through the 2020/2021 Innovation award under the category SMME.